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Abstract

Malaria is one of the most important diseases in tropical and subtropical areas,

with sub-Saharan Africa including Malawi being the region most burdened. The

region has the right combination of biotic and abiotic components, including so-

cioeconomic, climatic and environmental factors that sustain transmission of the

disease. Heterogeneity in these conditions across the country consequently leads

to spatial variation in risk of the disease. Analysis of nationwide survey data that

takes into account this spatial variation is crucial in a resource constrained country

like Malawi for targeted allocation of scare resources in the fight against malaria.

We used the 2010 Malaria Indicator Survey, which provides point referenced data

for the analysis. Structured additive logistic regression models with spatial correla-

tion were utilized to model the presence of parasitaemia in children while adjusting

for child, household level and climatic covariates, environmental factors and per-

sonal interventions. The resultant model was then used to produce a malaria risk

map for Malawi.

Children from poor households were over twice at risk of malaria than those from

the richest households (OR=2.07, CI: 1.72-2.78). However, the results indicated

a possible nonlinear relationship. On the other hand, the youngest children aged

between 0 and 1 year are about 76% less likely to contract malaria than children

aged between 4 and 5 (OR=0.244,CI:0.196,0.281). Those aged between 3 and 4

are only 28% less likely to have malaria (OR=0.717, CI:0.667-0.818). There is

a general increase in risk as the child approaches the age of five which could be
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explained by a decline in maternal immunity. Average total rainfall in the three

months preceding the survey did not show a strong association with the disease

risk while minimum temperatures shows an association with disease risk. The

predicted malaria risk map produced by the model was in conformity with the

expected disease pattern whereby central plain areas have higher risk than the

high altitude districts in the north.

Our risk maps show an improved estimation at local level than previous efforts

which were based on limited data collected from small surveys. It is hoped that

this study can help reveal areas that require more attention from the authorities

in the continued fight against childhood malaria.
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Chapter 1

Introduction

1.1 Global burden of malaria

Malaria is one of the most important diseases in the world today and it is common

in tropical and subtropical areas, with sub-Saharan Africa being the region most

burdened. It is a vector borne disease caused by the protozoan Plasmodium.

About 90% of all malaria cases are reported in this part of Africa. The region

has the right combination of biotic and abiotic factors including socioeconomic,

climatic and environmental variables that sustain transmission of the disease. The

parasite Plasmodium falciparum is the cause of the fatal type of malaria. The other

types malaria parasites (Plasmodium vivax, Plasmodium ovale and Plasmodium

malariae) are less likely to cause fatal episodes of malaria.

The disease has both serious social and economic implications in the countries

where it is endemic. On the economic front, the disease is estimated to cost about

$12 billion every year in lost GDP in Africa. In the year 2007, 2.73 billion people

lived in areas at any risk of Plasmodium falciparum which is the malaria causing

parasite and almost all P.falciparum prevalence rates above 50% were reported in

Africa (Guerra et al., 2008). Every year, malaria accounts for 16% of all under-five

deaths in Africa (Yoko and Rifat, 2011).
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Figure 1.1: World map showing malaria endemic regions in 2010. Source: WHO

1.2 Local malaria burden

Malawi has not been spared the burden of the disease either with an estimated 6

million cases annually. The disease is the single biggest killer of children under the

age of five in Malawi. Children in this age group are at risk of other co-infections

as a result of malaria such as anaemia. This age group is also at a higher risk of

developing cerebral malaria which is a severe form of the disease.

The government of Malawi (GoM) together with its development partners as well

as the Global Fund have pooled together a lot of resources in the battle against

malaria. The total expenditure on malaria as a percentage of total expenditure

increased from 10.28% in 2002/03 to 12.18% in 2005/06. This increase in malaria

financing is in line with the National Malaria Strategic Plan that was concerned

with scaling up malaria interventions in order to achieve a malaria free Malawi.
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1.3 Malaria epidemiology and transmission

In Malawi, the disease is mainly caused by Plasmodium falciparum accounting for

98% of all malaria cases (Ministry of Health (MOH), 2010). Mosquitoes act as

the vectors especially those of the Anopheles funestus, A. gambiae and A. arabiae.

Transmission is through bites of mosquitoes carrying the parasite.

Malaria has been known to be climate driven as the vector activities are determined

by the prevailing conditions. Higher temperature, humidity and rainfall provide

the optimum conditions for the breeding and development of these vectors. A

2006 study found that malaria risk in Malawi was significantly associated with

climatic factors such as rainfall, maximum temperature (Kazembe et al., 2006).

Consequently, malaria incidence peaks during the period October to April which

coincides with the rainy season and thus the right environmental and climatic

conditions. The lower Shire districts of Nsanje and Chikhwawa have also been

identified as having the best combination of climatic and geographical features that

increases malaria transmission (Djinjalamala, 2006).Temperature further dictates

the latitudinal and altitudinal ranges of the vector (Westbrook et al., 2010). On

the other hand, extreme climatic conditions are not suitable for the life cycle

development of mosquitoes (Gemperli, 2003).

The transmission and range of the disease are being projected to change due

to climate change. This hypothesis has already been tested in West Africa and

Europe using the scenarios of the International Panel on Climate Change Annual

Report 4 (IPCC AR4)(Usher, 2010).

1.4 Malaria interventions

In a bid to stop malaria, the Roll Back Malaria (RBM) partnership was founded in

order to halve malaria burden by the year 2010. Some of the strategies advanced
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by RBM to combat malaria include country strategic plans, country partnerships

and health systems delivery. The NMCP strategic plan for 2011-15 aims to achieve

universal coverage in the prevention and treatment of malaria.

There are many preventive measures for malaria that are currently in use in

Malawi. The most commonly used and perhaps the cheapest are insecticide treated

nets (ITNs). The President’s Malaria Initiative (PMI) has been supporting ITN

distribution and indoor residual spraying (IRS) in the country. This initiative dis-

tributed 2, 370, 831 ITNs between 2007 and 2011 countrywide. It has also sprayed

97, 329 homes countrywide protecting 364, 349 people in the process (President’s

Malaria Initiative (PMI) Country Profile: Malawi, 2011). These methods are

targeted at killing the vectors thereby stopping transmission.

1.5 Distribution of malaria

In Malawi, all people are at risk of malaria (WHO, 2010). Malaria prevalence

and incidence greatly varies in the country as a result of a wide range of factors

including socio-economic and climatic. Socioeconomic factors play a role in this

disparity as revealed by differences in rural and urban disease burden. Children

from rural and less privileged families are more vulnerable to malaria attacks and

have a higher risk of developing severe malaria than children from urban areas.

According to the 2010 DHS report, 30.7% of urban children had fever in the preced-

ing two weeks before the survey as compared to 35.1% of rural children (National

Statistical Office (NSO) and ICF Macro, 2011). The 2010 MIS survey reported

malaria parasitaemia prevalence of 14.7% in urban areas and 46.9% prevalence in

rural areas.

On the other hand, rainfall, temperature and humidity are known to have an im-

pact on malaria. These conditions directly affect the vectors both negatively and

positively. Very high and low temperatures for example slow down life cycle de-
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velopment of the mosquitoes thereby reducing or stopping transmission at certain

temperatures. Generally, malaria prevalence is lower in highland areas where tem-

peratures are much lower. Such areas include Nyika Plateau, Dedza among others

(Kazembe, 2007). On the other hand, low lying areas with higher temperatures

are associated with higher risks of malaria. The lakeshore and Lower Shire areas

are examples of such places.

1.6 Problem statement

From the foregoing discussion, it is obvious that there should be a spatial variation

in the risk of malaria across the country. Such variation could be between places

such as rural and urban, in terms of elevation among other factors. However,

there has not been much research on the spatial statistical analysis of malaria

data in the country. Kazembe is one of the researchers that have worked in this

area (Kazembe et al., 2006; Kazembe, 2007). These papers however did not use

comprehensive malaria data from nationwide survey like the MIS.

The lack of geo-referenced data that is required for this kind of analysis has also

contributed to less utilization of spatial statistical methods. As a result, the

issue of disease mapping that is now crucial among epidemiologists has not been

adequately addressed thus leading to a lack of an empirical malaria risk map for

the country. Moreover, the predictive nature of these spatial statistical models

has also not been fully exploited thereby denying policy makers a head start in

the fight against the disease. Much of the knowledge about malaria distribution

has most times been based only on expert opinion. Such information, though very

useful in targeted malaria interventions needs also to be supported by data from

representative surveys like the MIS.
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1.7 Research questions

It is hoped that this analysis will answer the following critical questions regarding

childhood malaria:

1. How does malaria risk in Malawi vary spatially?.

2. To what extent can spatial variation in malaria risk be accounted for by

household and geographical variables as well climate variations?.

3. To what extent do interventions for malaria, such as ITN distribution, affect

the spatial distribution of malaria among children.

4. Can the developed models predict where increases in malaria risk are more

likely to occur?.

1.8 Research objectives

The main objective of the study was to predict malaria incidence in children in

areas where no survey observations were made. The specific objectives were as

follows:

1. To analyse, predict and map malaria prevalence in Malawi.

2. To develop models for predicting malaria risk.

3. To investigate risk factors for malaria.

4. To assess the impact of different malaria interventions on disease risk.

1.9 Justification and significance of the study

Through the Mapping Malaria Risk in Africa (MARA) project (MARA, 2004),

the first coordinated efforts to map malaria risk in Africa were made. Based on
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this project, many countries and researchers have produced risk maps for different

countries in Africa that clearly show the malaria endemic areas on the continent

as well as the different levels in the risk of the disease. These maps show malaria

to be endemic to Malawi with the highlands having the lowest risk. The Malaria

Atlas project (MAP) (MAP, 2006) is another attempt to map malaria prevalence

with the purpose of effective allocation of scarce resources.

However, both MARA and MAP products, though informative are not very use-

ful in predicting malaria incidence at the local level because they have a coarse

resolution. The maps developed are climate based and as a result, they do not

take into consideration the other factors that are connected to malaria risk and

distribution. Both MARA and MAP did not use empirical data for Malawi.

Furthermore, different surveys that have been conducted in the past did not cover

the whole country so as to be useful for predictive purposes. The MIS is the

first nationally representative malaria survey to be conducted that provides rich

information on geographical as well as socioeconomic variables. With data from

MIS, a comprehensive risk map for malaria based on a wide range of variables is

possible.
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Chapter 2

Theory

In this chapter, the development of statistical models for the analysis of spatial

data sets is discussed. The opening section looks at the linear model and its

development and later its evolution into more general models that are capable of

handling data where spatial correlation is present.

2.1 The linear model

Linear statistical modeling is one of the central ideas of statistics. In linear regres-

sion, a mathematical relationship between a response and explanatory variable

is defined as a linear function. In the presence of k explanatory variables and n

observations, a multiple linear regression model can be specified in this form

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik, i = 1, . . . n (2.1)

where β0, β1, . . . , βk are the regression coefficients and xij are explanatory vari-

ables. In general, the linear model is often represented in matrix notation as

follows:

Y = Xβ + ε. (2.2)
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In the above model, y is a vector of observations, X a matrix of explanatory

variables known as the design matrix, β a vector of regression coefficients and

lastly, ε is a vector of random errors. The following assumptions are made about

the linear regression model.

1. Response variable y is continuous.

2. Errors are independent and identically distributed as normal with mean zero

and constant variance, i.e. ε ∼ N(0, σ2).

The method of least squares is widely used to estimate the model parameters β.

2.2 Generalized linear model

The Generalized linear model (GLM) (McCullagh and Nelder, 1989) is an exten-

sion to the linear regression models. The classic regression models specified in

the preceding section are not sufficient as they are restricted by the major as-

sumptions above. In medical research for example, it is not uncommon to come

across a response variable that is not continuous in nature. For example, whether

a child has received a vaccination or not could be used as a response. Clearly,

these models are not suitable in these situations. The GLM is a unifying model

framework in which non-normal responses can be modelled and allows for a more

complicated relationship between the response and the explanatory variables other

than a simple linear relationship (Dobson, 2002).

The GLM has got three parts: random component, link function and the system-

atic component (Agresti, 2006). The random component identifies the response

variable and its underlying distribution. The systematic component on the other

hand specifies the explanatory variables. The explanatory variables are usually

written as a linear combination in the form η = Xβ to form the linear predictor.

This term is related to the expected value of the response variable through the

link function, g(.). The choice of a link function depends on the distribution of
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the response variable. For a binomial distribution such as in this study where the

response is binary, the logit link log( µ
1−µ) is used. In other words,

g(µ) = log

(
µ

1− µ

)

where µ = E(Y ). In a GLM the probability distribution of the response variable

is a member of the exponential family of distributions which can be written in the

form:

f(y|θ, φ) = exp

[
yθ − b(θ)
a(φ)

+ c(y, φ)

]
. (2.3)

The θ in equation 2.3 is the canonical parameter representing the location and the

φ is the dispersion parameter (Faraway, 2006).

2.3 Generalized linear mixed model

It happens in some instances that there is correlation between the observations

that are being modelled. In longitudinal studies for example, where repeated

measurements are made on the same individual over time, the data is also usu-

ally correlated (Jiming, 2007). In spatial statistics, observations are also usually

correlated due to spatial autocorrelation which means that observations close in

space are more similar than those further apart (Lawson, 2008). The GLM looked

at earlier assumes that the observations are independent which is not the case in

this situation (Hedeker and Gibbons, 2006). As a solution, linear mixed models

can be utilised to take into account the random effects.

A generalized linear mixed model (GLMM) (Breslow and Clayton, 1993) is an

extension of the GLM in the sense that random effects are accommodated in

addition to the fixed effects. In general, a mixed model has the form,

y = Xβ +Zu+ ε.
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where y is the response vector, u is a vector of random effects which are usually

assumed to follow a normal distribution with mean 0 and some variance-covariance

matrix Σ, that is u ∼ N(0,Σ). A logistic regression with random effects may be

written as,

logit(pi) = Xiβ + Ziu. (2.4)

2.4 Types of spatial data

Spatial data is finding increasing usage in medical research and other disciplines.

In this section, the different classes of spatial data that are encountered in practice

are briefly discussed.

2.4.1 Areal data

In areal (lattice) data, it is thought that there exists a regular or irregular subset

D divided into a finite number of areal units. These units possess well-defined

boundaries that enclose the spatial regions.

2.4.2 Point-pattern data

Point-pattern data is obtained when the subset D is random, its index set gives

the locations of random events that are in the spatial point pattern. Y (s) equals

1 for all s ∈ D.

2.4.3 Point-referenced data

This kind of data is obtained when the sampled points xi are georeferenced by ei-

ther latitude-longitude or northing-easting systems. Point referenced (also known

as geostatistical) data has its own dedicated branch of spatial statistics known as
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geostatistics which is concerned with this kind of data. In this stufy, the focus is to

use malaria risk observed at spatial locations xi to predict the risk throughout the

study region which is the whole of Malawi. The use of these points for prediction

is necessary since it may not be feasible to measure the risk at each and every

location. The malaria risk is then represented by a spatially continuous stochastic

process S(x) which is a function of location xi.

To model geostatistical data such as the MIS dataset, Gaussian stochastic pro-

cesses are widely used (Diggle and Ribeiro, 2007). A Gaussian spatial process,

S(x) : x ∈ R2 is a stochastic process with the property that for all the spatial lo-

cations x1, . . . , xn with each xi ∈ R2, the joint distribution of S = S(x1), . . . , S(xn)

is multivariate Gaussian (Diggle and Ribeiro, 2007). Obviously there is a discrep-

ancy between the true risk, S(xi) and Yi which is the measured risk during the

survey and this has to be taken into consideration in the model. In its simplest

form, geostatistical data is represented by (xi, yi) : i = 1, . . . , n where xi is the

spatial location and yi is the measured value at xi. The stationary Gaussian model

has these two assumptions (Diggle and Ribeiro, 2007):

1. {S(x) : x ∈ R2} is a Gaussian process with mean µ, variance σ2 = Var{S(x)}

and a correlation function ρ(u) = Corr{S(x), S(x′)} where ||x − x′|| is the

distance between spatial locations x and x′;

2. Conditional on S(x) : x ∈ R2, the yi are the realizations of mutually inde-

pendent random variables Yi, normally distributed with conditional means

E[Yi|S(.)] = S(xi) and conditional variances τ 2

The model can then be represented as the equation

Yi = S(xi) + Zi : i = 1, . . . , n (2.5)

where S(x) : x ∈ R2 is defined as above and the Zi are mutually independent

N(0, τ 2) random variables.
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The MIS dataset is an example of geostatistical data that fits this description. In

this survey, malaria status of a child measured by Rapid Diagnostic Test (RDT)

was measured at sampled locations across the country. The country can be thought

of as the entire spatial region and the sampled locations as realizations of an

unobservable spatial process. Furthermore, all households with children who were

eligible for testing were referenced by latitudes and longitudes. In theory, malaria

can be detected everywhere in Malawi. However, in practice, the observed data

are just a partial realization of the spatial process observed at {x1, x2, . . . , xn},

which represents the sampled households.

Point referenced data is increasingly been collected in Malawi mainly due to the

need of linking health outcomes to specific locations for targeted interventions

and increased access to GPS technology. The fact that data is typically collected

at a subset of all the locations in the area of interest makes inference about the

process S(.) at new unsampled locations the primary objective (Banergee and

Finley, 2009). The survey data is presented in the figure below.

Figure 2.1: Point referenced data from MIS survey
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2.5 Analysis of spatial data

The commonly used statistical models falling in the family of GLMs assume that

the observations are independent. This obviously is violated when there is a

correlation between the observations. For spatial data, a phenomenon known as

spatial autocorrelation is usually seen. This refers to the idea that values close to

each other in space are more similar than those separated by a greater distance.

In this project, the malaria status of a child at a location is a binary covariate

hence necessitating a logistic regression. As a result, the simple GLM has to be

modified to take into account this autocorrelation. This modification leads to the

use of GLMM and Bayesian techniques are often employed for inference.

In the next two sections, we look at different approaches to analyzing the two

commonly encountered types of spatial data in epidemiology. We look at how the

GLM is adapted to take into consideration the inherent spatial correlation in the

data.

2.5.1 Lattice spatial modeling

The analysis of areal data is quite common in the literature and such problems

occur quite often in public health. If for example, the presence or absence of

malaria at an enumeration area (EA) level in the country can be designated as

Y (s) where s is the EA and the EAs are the grid cells, then a logistic regression

model that includes a spatial autocorrelation can be defined as:

log

(
pi

1− pi

)
= x′iβ + ui. (2.6)

For this equation, the spatial random effect ui is associated with each of the grid

cells and adjusts the probability of presence of the variable of interest depending

on the value of p in the cell’s spatial neighbourhood (Latimer et al., 2006). The

15



Gaussian conditional autoregressive model is used to capture this process (Besag

and Kooperberg, 1995). It is assumed that the conditional distribution of the

spatial random effect in a given cell i given values of the spatial random effect

in the other grids j 6= i depends only on the neighbouring cells of i (Latimer

et al., 2006). Cells i and j are defined as neighours if their boundaries intersect.

The spatial effect for any given cell depends on the value of u for the cells in its

neighbourhood, i.e.

ui|uj ≈ N

(∑
j∈δi aijuj

ai+
,
σ2
u

ai+

)
; j 6= i. (2.7)

In this CAR model, ai+ denotes the total number of neighbouring cells of i and

ai+ = 1 if two sites i and j share the same boundaries and 0 otherwise. The

variance term σ2
u is assigned an inverse gamma prior which has mean bu with

infinite variance, i.e. σ2
u ∼ IG(2, bu). The β are assigned non-informative normal

priors with mean 0 and a large variance.

2.5.2 Point-level statistical modelling

In the preceding section, an example of a common approach to analysing spatial

binary data at grid level was discussed. In this section, we go a step further to look

at data that is point referenced. The data is referenced to exact locations where

the observations were made and not to grid cells. Unlike the approach used in

lattice model where the spatial structure is modelled between neighbouring cells,

the spatial autocorrelation in point level models is directly modelled between the

points in the dataset. The distances between the points are typically used to

model this spatial dependence.

Point referenced data have been extensively analysed using model based geostatis-

tics (Diggle et al., 1998). Model based geostatistics (MBG) is a framework that

utilises explicit parametric stochastic models to geostatistical data. Since their
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development, MBG models, which are typically implemented under a Bayesian

framework, have enjoyed increasing usage among researchers. For instance, a

Bayesian logistic geostatistical analysis of Human African Tryoanosomiasis was

done in Uganda (Wardrop et al., 2010). In West Africa, Schistosomiasis preva-

lence was analysed using the Bayesian geostatistical models (Schur et al., 2011).

A similar study was conducted to predict intensity of infection with Schistosoma

misoni in East Africa (Clements et al., 2006). Bayesian geostatistical models were

also used to analyse malaria indicator survey data in Angola and Zambia (Gosoniu

et al., 2010; Riedel et al., 2010). Finally, a Bayesian binary logistic geostatisti-

cal model was used to study risk factors for childhood malaria in the Gambia

(Rowlingson et al., 2002).

For this study, let the outcome of a test for malaria at household i be yi. If yi = 1

for a diseased child and yi = 0 for an under five child without the disease and pi

is the probability of testing positive, then

yi ∼ Bernoulli(pi).

An ordinary GLM with a logit link can be fitted to the data to model the rela-

tionship between malaria status and different covariates (household level, environ-

mental and climatic etc)

logit(pi) = α + β′ixi. (2.8)

In the model α is the intercept, βi is the vector of regression coefficients and xi is

a vector of explanatory variables. This base model is fitted in order to find which

variables are associated with malaria prevalence in the area.

In order to capture the spatial autocorrelation that may be overlooked by the

ordinary GLM, a GLMM with spatial random effects has to be fitted. In the ab-

sence of this spatial random effect term, there is danger of attributing unobserved

spatial variation to the random error. The following equation is a GLMM with a
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spatial random effect.

log

(
pi

1− pi

)
= α + β′ixi + Si. (2.9)

A fully Bayesian approach is used to estimate model parameters. Each parameter

in the model 2.9 above is assigned a prior distribution that will be updated to

obtain the posterior. The spatial component S = (s1, . . . , sn)T is assumed to be

distributed as a multivariate normal with mean 0 and covariance matrix between

any two locations si and sj is,

Σij = σ2exp

(
−dij
ρ

)
.

In this formulation, σ2 stands for the spatial variation while ρ controls the rate

of decay of spatial autocorrelation (Gosoniu et al., 2006). The term dij = xi − xj

measures the shortest distance between two locations xi and xj. The coeffi-

cients are typically given non informative uniform priors while the σ2 and ρ are

assigned vague inverse gamma priors .i.e. p(β) ∝ 1, p(σ2) = IG(a1, b1) and

p(ρ) = IG(a2, b2) respectively (Gemperli, 2003).

2.6 Structured additive regression models

Until now, we have been looking at both GLMs and GLMMs as they are applied

in geostatistics. In both these models the assumption of linearity of the covari-

ate effects is usually made. GLMMs for instance are used to model covariate

effects using a parametric mean function while accommodating correlation and

overdispersion by adding random effects to the linear predictor (Lin and Zhang,

1999).

Generalized additive mixed models (GAMM) extend the GLMM by adding un-

known smooth functions of continuous and spatial covariates among others (Lang
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and Fahrmeir, 2001). The parametric mean assumption may not be appropriate

since the functional form of these covariates may not be known (Lin and Zhang,

1999). In general, the GAMM and the generalized additive model (GAM) (Hastie

and Tibshirani, 1990) are special cases of a broader group of additive models

known as structured additive regression models (STAR) which will be our focus

for the remainder of this thesis. Just like GAMMs, GAMs extend the GLM by

adding smooth functions in addition to the linear terms in the predictor (Kelsall

and Diggle, 1998). Another class of models belonging to the STAR are geoadditive

models (Kammann and Wand, 2003) which were derived by merging additive and

geostatistical models. These STAR models are increasingly being used mainly due

to the accessibility of powerful computers which have made the analyses somewhat

easy.

The presence or absence of the malaria parasite in a child can potentially be

modelled as a STAR model in any of its forms. The models considered earlier

possess the linear predictor component

∑
xijβj,

which can be replaced by the additive component

∑
fj(xij).

In our study, we are concerned with the problem of fitting a logistic regression to

model the outcome of a malaria test in a child but taking into account the spatial

correlation observed. The ordinary GLM without any spatial effects is given by,

log

(
p(yi|xi1, . . . , xip)

1− p(yi|xi1, . . . , xip)

)
= β0 + xi1β1 + · · ·+ xip (2.10)

where p(yi|xi1, . . . , xip) is the probability of testing positive given a set of differ-

ent covariates xi1, . . . , xip. The GAM is obtained by simply adding the additive
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component to model 2.10 and consequently becomes

log

(
p(yi|xi1, . . . , xip)

1− p(yi|xi1, . . . , xip)

)
= β0 + f1(xi1) + · · ·+ fp(xip). (2.11)

In equation 2.11, the functions f1, . . . , fp are the smooth functions. The GAMM

is just an extension to the GAM and for our logistic model can be written as,

logit(pi) = β0 + f1(xi1) + · · ·+ fp(xip) + zTi b. (2.12)

The geoadditive model, also belonging to STAR models was defined by (Kammann

and Wand, 2003) by combing the simple universal kriging model 2.39 with the an

additive model y = Xβ + Zb+ ε to yield

yi = β0 + f(si) + g(ti) + β′1(xi) + s(xi) + ε.

Like GAMs and GAMMs these models are also being used in practice. For in-

stance geoadditive modeling of malaria was done in Burundi (Nkurunziza et al.,

2010). This study used cubic splines to model effects of continuous covariates.

These models have also been used in South Africa to assess nonlinear geographi-

cal variation in HIV prevalence while controlling for demographic and sexual risk

factors (Wand et al., 2011). Kandala examined the spatial variation in under five

malnutrition and risk factors for child morbidity by using these models (Kandala

et al., 2007, 2011).

In general, the equation below represents the general form of a STAR model which

unifies all these special cases.

η = f1(x1) + f2(x2) + · · ·+ fj(xj) + · · ·+ fp(xp) + u′γ. (2.13)

In equation 2.13, xj are the covariates of different types and fj are functions of the

covariates and contain the non-linear effects of the continuous covariates and γ is
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the vector of regression coefficients of linear effects. However, it is necessary to

represent the smooth effects of the metric covariates in some way. These functions

are approximated by a linear combination of basis functions which are defined as

follows (Belitz et al., 2009b);

f(x) =
K∑
k=1

βkBk(x). (2.14)

The Bk are known basis functions and β = (β1, . . . , βk)
′ is a vector of regression

parameters to be estimated. The incorporation of the smoothing functions in the

general STAR model 2.13 leads to a linear model framework (Belitz et al., 2009b).

Model 2.13 then becomes:

η = X1β1 + · · ·+ Xpβp + Uγ + ε, (2.15)

where U is the design matrix for linear effects, γ is the vector of regression co-

efficients for linear effects and ε is the vector of errors (Belitz et al., 2009b). A

roughness penalty is imposed on the regression coefficients to avoid over fitting

since a large number of basis functions is usually specified. We employ the same

quadratic penalty of the form β′P(λ)β as in (Belitz et al., 2009b) where P(λ) = λK

is the penalty matrix and λ is a scalar smoothing parameter that determines the

smoothness of fit.

2.7 Parameter estimation

In this section, we take a closer look at the major approaches to inference of STAR

models. We discuss the expanded approach to estimation and Bayesian methods.

However, challenges are faced when it comes to parameter estimation. In the

expanded approach, we briefly discuss marginal and joint distribution methods.
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2.7.1 Expanded approach to parameter estimation

The marginal estimation methods are concerned with the fixed effects. The fo-

cus is to come up with the marginal distribution from which the parameters

can be estimated. However, obtaining the marginal distribution of the form

f(y; β) =
∫
f(y, β, u)du from the mixed model 2.4 poses a great challenge. Ap-

proximate methods utilized include the quasi likelihood, Laplace approximation,

Gauss-Hermite quadrature and Markov Chain Monte Carlo. In general, the like-

lihood of a GLMM involves the following integral (Dalgaard, 2006)

∫ ni∏
j=1

f(yij|bi, β, φ)f(bi|D)dbi. (2.16)

Integral 2.16 cannot be exactly evaluated hence the need for better methods of

parameter estimation.

2.7.2 Bayesian statistical modeling

In Bayesian approach to statistical analysis, prior knowledge is incorporated to

come up with new estimates. The parameters are thought to be random with

distributions. The whole idea is to update observed data with prior knowledge to

come up with posterior beliefs that can then be used for inference. All the infer-

ences such as estimating means are carried out on the posterior distributions. The

posterior mean for example, is a weighted mean of the prior and the observed data.

At the cornerstone of this method is the Bayes Theorem which for a continuous

probability density function can be written in the form below:

f(θ|y) =
f(y|θ)f(θ)

f(y)
. (2.17)

In this equation, f(θ|y) is the conditional distribution of the parameters given the

data known as the posterior distribution. The prior distribution is given by f(θ)
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while f(y|θ) =
∫
f(y|θ)f(θ)dθ is the likelihood function. In most cases however,

the expression is written in the form f(θ|y) ∝ f(y|θ)f(θ).

As an example, suppose one has drawn a single observation y where y ∼ N(θ, σ2).

If an assumption is made that σ2 is known, then

f(y|θ) =
1

σ
√

2π
exp

(
−1

2σ2
(y − θ)2

)
. (2.18)

Further, suppose that the prior of θ is normal distribution, i.e. p(θ) = N(θ|µ, τ)

where µ and τ 2 are known parameters. Then the posterior is computed as

p(θ|y) ∝ N(θ|µ, τ 2)×N(y|θ, σ2) (2.19)

After some algebraic manipulations, the posterior comes up to:

p(θ|y) = N

(
θ| σ2

σ2 + τ 2
µ+

τ 2

σ2 + τ 2
y,

σ2τ 2

σ2 + τ 2

)
. (2.20)

The maximum likelihood estimation (MLE) can be used to estimate the posterior

parameters for inference. However, this is not feasible for high dimensional inte-

grals that often result from combining the likelihood with the prior. The posterior

becomes complicated making evaluation under the MLE approach difficult. Sev-

eral numerical techniques have been developed to aid in the analysis of data in a

Bayesian approach.

2.7.3 MCMC simulation

The evaluation of the posterior distribution p(θ|y) to obtain statistics such as the

mean is computationally demanding and requires indirect methods of evaluating

the integral. Other methods such as Monte Carlo and Laplace are limited in their

scope (Smith and Roberts, 1993). To get around this problem, Markov Chain

Monte Carlo (MCMC) simulation techniques are utilized and are responsible for
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the rapid rise in use of Bayesian analysis since the early 1990’s. These methods

combine Monte Carlo Simulation and Markov chain ideas hence the name.

In MCMC, the idea of a Markov Chain comes in which is defined as:

P(Xn ∈ A|X0, . . . , Xn−1) = P(Xn ∈ A|Xn−1)

for {Xn, n ∈ N} defined on (m,h(m)), i.e. future states are independent of past

states given the present state. The MCMC techniques simulate draws from the

complex distribution of interest which is usually the posterior distribution. The

idea is to learn from the posterior by repeatedly sampling from it and then sum-

marizing the draws. To compute the posterior mean for example, the following

integral has to be evaluated.

E(θ|y) =

∫
Θ

θp(θ|y)dθ

In order to make inference about the posterior, a sequence of G random draws

θ(1), θ(2), . . . , θ(G)

from the posterior p(θ|y) is drawn. Then the posterior is computed as a mean of

the G draws. In short, this integral is evaluated via Monte Carlo integration and

the simulation is through Markov chains i.e,

E(θ|y) =

∫
Θ

θp(θ|y)dθ ≈ 1

G

G∑
g=1

θ(g).

Suppose the draw θ(t) is the present state at iteration t. The next draw θ(t+1)

depends only on the current draw θ(t) and not on any other past draws thus giving

rise to the Markov chain;

p(θt+1|θ(1), θ(2), . . . , θ(t)) = p(θ(t+1)|θ(t))
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The generated chain is made up of draws and each is slightly dependent on the

previous one and it converges to the target distribution p(θ|y) under any sampling

scheme regardless of the starting point.

There are two sampling schemes used in MCMC, Gibbs and Metropolis-Hastings

algorithms. In Metropolis-Hastings algorithm (M-H), a function proportional to

the density function is required and has to be calculated. On the other hand, the

Gibbs sampler does not need to calculate this function and it is generally faster

than the M-H algorithm since it works on weaker assumptions. The software

package WinBUGS1 uses the Gibbs sampler for analysis. In our study, we use the

M-H algorithm as implemented by Bayes X (Belitz et al., 2009a). In general, the

estimator 1
G

∑G
g=1 θ

(g) converges to E(θ|y). More details on the MCMC algorithms

are included in the appendix.

2.7.4 Fully Bayesian approach

The unknown functions fj in the STAR model are assumed to be random and

hence have their own distributions. The Bayesian approach to statistical inference

demands that prior knowledge be incorporated in the inference process. Without

any prior knowledge, the most appropriate priors for the fixed effects parameters

are the diffuse priors, i.e.

p(θi) ∝ const (2.21)

Priors for unknown functions fj depend on the type of covariates and on prior

beliefs about the smoothness of fj. By expressing the vector of function evaluations

fj = (fj(x1j), . . . , fj(xnj))
′ of a function fj as the product of a design matrix and

a vector of unknown parameters βj , the general STAR model can be written in

this manner;

η = X1β1 + · · ·+ Xpβp + Uγ, (2.22)

1http://www.mrc-bsu.cam.ac.uk/bugs/
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where U is the design matrix for fixed effects and fj = Xjβj . The prior for

the function fj is defined by specifying a suitable design matrix Xj and a prior

distribution for the vector βj of unknown parameters which has the general form

p(βj|τ 2
j ) ∝ 1

(τ 2
j )rank(Kj/2)

exp

(
− 1

2τ 2
j

βj
′Kjβj

)
, (2.23)

where Kj is a penalty matrix. The variance parameter τ 2
j is equivalent to the

inverse smoothing parameter in a penalized likelihood approach and controls the

trade off between flexibility and smoothness. The unknown variance parameters

τ 2
j are assigned hyperpriors. For this study, we assign the usual non informative

dispersed inverse Gamma priors p(τ 2
j ) ∼ IG(aj, bj) where,

τ 2
j ∝ (τ 2

j )−aj−1exp(−bj/τ 2
j ) (2.24)

Bayesian inference is based on the posterior.

p(β1, . . . , βp, τ
2
1 , . . . , τ

2
p , γ|y) ∝ L(y, β1, . . . , βp, γ)

p∏
j=1

(p(βj|τ 2
j )p(τ 2

j )), (2.25)

where L(.) is the likelihood which is simply the product of individual likelihood

contributions.

2.7.5 Emperical Bayesian inference

The empirical Bayesian approach to inference is based on mixed model methodol-

ogy. The STAR model is reparameterized as a GLMM (Fahrmeir et al., 2004) and

then restricted maximum likelihood estimation approach (REML) is used. Param-

eter estimation in REML approach involves decomposing the vector of regression

coefficients βj in the STAR model 2.13 into penalized and unpenalized parts. For

a parameter vector βj with dimension Kj × 1 and the penalty matrix Kj with
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rank j, the decomposition process yields

βj = Xunp
j βj

unp + Xpen
j βj

pen. (2.26)

From the decomposition, the following is obtained

1

τ 2
j

β′jKjβj =
1

τ 2
j

(βpenj )′βpenj

The general prior for βj in expression 2.23 leads to the following;

p(βunpjm ) ∝ const, m = 1, . . . , Kj − kj

and

βpenj ∼ N(0, τ 2
j I).

The last step the reparameterization process involves defining matrices Ũj =

XjX
unp
j and X̃j = XjX

pen
j thus leading to the predictor η =

∑p
j=1 Xjβj + Uγ

defined in equation 2.22 changing to;

η =

p∑
j=1

(Ũjβ
unp
j + X̃jβ

pen
j + Uγ) (2.27)

= Ũβunp + X̃βpen. (2.28)

The final GLMM has fixed effects βunp and random effects βpen ∼ N(0,Λ) where

Λ = diag(τ 2
1 , . . . , τ

2
1 , . . . , τ

2
p , . . . , τ

2
p ). The variances τ 2

j are assumed to be unknown

constants that have to be estimated from their marginal likelihood. The posterior

is given as follows.

p(βunp, βpen|y) ∝ L(y, βunp, βpen)

p∏
j=1

(p(βpenj |τ 2
j )), (2.29)
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2.8 Modelling spatial effects in STAR models

In the preceding sections, we looked at approaches widely used to model spatial

effects in the parametric geostatistical models for both point referenced and grid-

ded data. In STAR models, methods for point and grid data also exist. More

details are discussed below.

2.8.1 Markov random fields

The Markov random fields (MRF) are the CAR models discussed under the para-

metric models. The similarity lies in the fact that we are modelling spatial effects

on a lattice. In both these methods, conditional distribution on a cell depends on

the neighbouring cells. The sites in S are related to one another via the neigh-

bourhood system which is defined as N = {Ni, i ∈ S}, where Ni is a set of sites

neighbouring i and i /∈ Ni. Moreover, this relation holds true, i.e. i ∈ Nj implies

that j ∈ Ni.

Suppose s ∈ {1, . . . , S} is the location or site in connected spatial regions. In

our context, these spatial regions can either be enumeration areas or districts.

These regions are labeled consecutively for simplicity reasons and we assume that

neighbouring sites are more similar than the distant ones. Any two sites si and

sj are considered neighbours if they share a common boundary. The simplest and

commonest spatial prior for the function evaluations f(s) = βs is,

βsi |βsj , si 6= sj, τ
2 ∼ N

 1

Nsi

∑
sj∈∂si

βsj ,
τ 2

Nsi

 (2.30)

where Nsi is the number of adjacent sites and sj ∈ ∂si denotes that site sj is a

neighbour of site si. The conditional mean of βsi is therefore an unweighted average

of function evaluations at neighbouring sites. The MRF is a direct generalization

of a first order random walk prior.
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2.8.2 Polynomial splines

A polynomial spline of degree p is defined in this manner; f : [a, b] → R where

p ∈ N with equally spaced knots:

a = κ0 < κ1 < · · · < κm−1 < κm = b. (2.31)

A simple linear model of the form yi = m(xi) + ε can be written in terms of a

polynomial spline in order to approximate m(.) as:

m(x; β) = β0 + β1x+ · · ·+ βpx
p +

K∑
k=1

βp+k(x− κk)p+, (2.32)

where p is the degree of the polynomial, κ1 < · · · < κK is a set of K knots and

β = (β0, . . . , βp+K) (Ruppert et al., 2003). Types of polynomial splines include

the P-splines and the B-splines among others.

Penalised splines based on the linear combination of basis functions in equation

2.14 are utilized to solve the problem of overfitting and underfitting which some-

times arises. For each regression coefficient, βk, there is an associated smooth term

of the form P(λ) = λK where λ is a scalar parameter that controls smoothing.

P-splines are another approach used to model the effects of continuous covariates

(Eilers and Marx, 1996). An assumption that there is an underlying unknown

smooth function f of a covariate x is made. It is further assumed that this smooth

function can be approximated by a polynomial spline of degree l defined by equally

spaced knots, i.e.

xmin = κ0 < κ1 < · · · < κm−1 < κm = xmax (2.33)

within the domain of x. Written in terms of K = m+ 1 B-spline basis functions,
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Bk, we have;

f(x) =
K∑
k=1

βkBk(x) (2.34)

where β = (β1, . . . , βk)
′ is a vector of unknown regression coefficients and the n×K

design matrix X consists of the basis functions evaluated at the observations xi, i.e.

X[i, k] = Bk(xi). If a few knots are used, the spline may not capture the variability

of the data. For large number of knots, overfitting is a concern in the model fitting

process. To get around this problem, Eilers and Marx suggested using moderate

number of equally spaced knots, usually between 20 and 40 to ensure flexibility

and to define a roughness penalty based on first and second order differences

of adjacent B-spline coefficients to guarantee sufficient smoothness of the fitted

curve (Eilers and Marx, 1996). This leads to penalized likelihood estimation with

penalty terms. First and second order random walks are used as priors for the

regression coefficients.

λ
K∑

k=r+1

(∆rβk)
2, r = 1, 2 (2.35)

where λ is the smoothing parameter. First order differences penalize abrupt jumps

βk − βk−1 between successive parameters while second order differences penalize

deviations from the linear trend 2βk−1 − βk−2.

2.8.3 Random walks

One approach of modelling the effects of continuous variables is through random

walks. Suppose x is a time scale or a continuous covariate with equally spaced

ordered observations such that

x(1) < x(2) < · · · < x(K)

where K ≤ n denotes the number of different observed values of x. An estimate

for one βk can be made for each x(k), i.e. f(x(x)) = βk and a penalty is imposed

for abrupt jumps between successive parameters using random walk priors. The
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first and second order random walks are given as follows

βk = βk−1 + εk, βk = 2βk−1 − βk−2 + εk (2.36)

with normally distributed errors, i.e. εk ∼ N(0, τ 2), diffuse priors p(β) ∝ const,

and p(β1) and P (β2) ∝ const for initial values respectively.

These specifications act as smoothness priors that penalize too rough functions fj.

The first order random walk penalizes abrupt jumps βk−βk−1 between successive

states. The second order random walk on the other hand penalizes deviations from

the linear trend 2βk−1 − βk−2. The joint distribution of the regression parameters

β is computed as the product of conditional densities defined in equations 2.36

above and can also be brought into the more general form as defined by (2.23).

The penalty matrix has the form K = DTD where D is the first or second order

difference matrix. The penalty matrix is given by,



1 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 1


(2.37)

2.9 Kriging

Kriging is a geostatistical technique that is used for spatial prediction at unob-

served locations (Waller and Gotway, 2004) utilizing the observation values at

nearby locations in the process (Shyu et al., 2011). Unlike the CAR and MRF

which deal with grided data in parametric and nonparametric setting respectively,

kriging is most useful in point level data (Latimer et al., 2006). In the 2010 MIS,

data was collected at specific points with the coordinates of sampled households
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being collected by GPS. Consequently, point models are most useful in this con-

text.In this section, we look at kriging for geostatistical models and then extend

to STAR models. In kriging, the variogram is a widely used statistic to represent

the spatial continuity or the roughness of the data. The empirical variogram as

defined by (Banergee and Finley, 2009) is,

γ(t) =
1

2|N(t)|
∑

si,sj∈N(t)

(Y (si)− Y (sj))
2, (2.38)

where ‖ si − sj ‖=t and |N(t)| is the number of points in N(t). Let (xi, yi),

1 ≤ i ≤ n, where the yi is a scalar and xi ∈ R2 is a geographical space, then the

universal kriging formula is given as below (Kammann and Wand, 2003).

yi = β0 + β′1 + S(xi) + εi, (2.39)

where {S(x) : x ∈ R2} is a stationary spatial process with mean 0. The error

terms ε are assumed to have mean 0 and a common variance σ2
ε . To predict at an

unobserved location x0 ∈ R2, the formula becomes:

ŷ(x0) = β̂0 + β̂′1 + Ŝ(x0), (2.40)

β̂0 and β̂1 being estimates of β0 and β1 respectively in equation (2.39) above.

The Ŝ(x0) is the empirical best linear predictor of S(x0). Finally, the equation

becomes,

ŷ(x0) = β̂0 + β̂′1x0 + ĉ′0(C + σ2
εI)(y − β̂′0)(y − β̂0 − β̂′1x0) (2.41)

where

C = (cov{S(xi),S(xj)}) 1 ≤ i, j ≤ n, (2.42)

c0
′ = (cov{S(x0),S(xi)}) 1 ≤ i ≤ n. (2.43)
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The spatial component is assumed to follow a zero mean Gaussian random field

with variance τ 2 and an isotropic correlation function,

cov{S(x),S(x′)} = Cθ(‖ x− x′ ‖). (2.44)

In equation 2.44, the Cθ belongs to the Matern family of covariance functions

which are defined as follows:

Cθ(r) = σ2
x(1+ | r | /ρ)exp(− | r | /ρ). (2.45)

In this formulation, ρ controls how fast correlations die out with increasing dis-

tance. As a rule, the choice of ρ is such that the scale invariance of the estimates

is ensured (Belitz et al., 2009b)

ρ̂ = max
i,j
||xi − xj||/c (2.46)

The constant c > 0 has to be chosen so that C(c) is small. The formulation of

the kriging methodology is still faced with the problem of larger datesets (Cressie

and Johannesson, 2008). In this study, the sample size of n = 2094 made the

evaluation of equation 2.41 a complex task. The difficulty comes in due to the

computation burden rendered by the n × n covariance structure. We are faced

with the dilemma where we would like to use all the points in the dataset for

inference, but at the same time, computation efficiency is required. To get around

this problem known as the big N problem, low rank kriging (Royle and Nychka,

1998) is used.

2.9.1 Low rank kriging and space filling algorithm

Space filling designs are sampling plans that optimize a distance based criterion

(Royle and Nychka, 1998). These designs do not depend on the covariance struc-
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ture of the process to be sampled hence their computation efficiency. Let the

points {y1, . . . , yk} obtained through the space filling algorithm be a representa-

tive sample of points {x1, . . . , xn}. These points, y′is, are also known as knots. It

means that for our inference purposes, we are going to use only a subset of all the

sampled locations.

2.10 Model selection

The need to select a model is of great importance in statistics. The observed data

is usually from an unknown probability distribution. As a result, several models

are fitted in order to the find the best. Those that are not very close to the

actual distribution have to be discarded then. We now take a look at the different

statistics that will be used in the model selection procedure.

2.10.1 The Likelihood function

Given a sample realization of x1, . . . , xn from a distribution with the density func-

tion pi(x), the likelihood function is

Ln(pi;x) =
n∏
i

pi(xi).

It is the joint probability density function of observable random variables and it is

viewed as the function of the parameters given the realized random variables. The

likelihood function is of great importance as it is widely used by several model

selection statistics.
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2.10.2 Akaike Information criterion

The Akaike information criterion (AIC) is one statistic used to select the best

model.

AIC = −2logL(θ̂|y) + 2k

where L(θ̂) is the likelihood function and k is the number of estimated parameters.

The AIC is calculated for each model under consideration using the same data and

the model with the lowest AIC is chosen. The term 2k is a penalty to be paid for

over fitting and this discourages adding too many variables in the models which

always leads to a smaller likelihood. This provides the trade off between over

fitting and optimum model fit.

2.10.3 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is another model selection statistic that

is based on the empirical log-likelihood and is independent of priors. Due to this

fact, the BIC is favoured in situations where the priors are difficult to set. It is

related to the AIC and both statistics penalize model complexity. Mathematically,

the BIC is,

BIC = −2 ln f(y|θ̂k) + k lnn.

The penalty term in the BIC is more strigent than the penalty term of AIC and

this leads to BIC favouring smaller models than the AIC.

2.10.4 Deviance Information Criterion

The deviance information criterion (DIC) (Spiegelhalter et al., 2002) is a gener-

alization of the AIC and the BIC and is widely used in model selection where

MCMC simulation is used. The DIC only works when the posterior is approxi-
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mately distributed as multivariate normal. The deviance is given as;

D(y, θ) = −2logP (y|θ) + C (2.47)

where p(y|θ) is the likelihood, θ is the unknown parameter and C is a constant

that cancels out in model comparison. The DIC has two components with one

measuring the goodness of fit and the other component is a penalty for increasing

model complexity. The average deviance,

D̄ = E[D(θ)] (2.48)

over the true sampling distribution measures how well the model fits the data. The

effective number of parameters is the component that measures model complexity

and is given by,

pD = D̄ −D(θ̄). (2.49)

The DIC is then calculated as,

DIC = pD + D̄. (2.50)

In model selection, the general rule is that models with smaller DIC be preferred

over models with a larger DIC. The DIC decreases as the number of parameters

in the model increases
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Chapter 3

Methodology

3.1 Study area characteristics

Malawi is a small country in Southern Africa bordered by Mozambique, Tanzania

and Zambia. As of 2011, the total population was 14 million and over 2 mil-

lion are aged less than five years (National Statistical Office (NSO), 2008). It is

administratively divided into three regions and further into 28 districts. Malawi

lies within the tropical regions with two distinct dry and wet seasons. Malaria is

endemic to most parts of the country and peaks during the rainy season that falls

between November and April. Altitude plays a significant role in the observed

differences in risk across the country as highland areas with cooler weather con-

ditions have lower disease risk. Areas such as Nyika and Zomba Plateaus fall in

this category. On the other hand, low lying areas along the lake and the lower

Shire Valley have higher prevalence of the disease. The country also has areas

with potential environmental characteristics that favour malaria transmission.

A large proportion of the Malawi population lives in the rural areas and children

from these families are at a higher risk of the disease than their urban counterparts

(National Statistical Office (NSO) and ICF Macro, 2011). In general, children

and pregnant women are at the highest risk of the disease than the other groups.
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Figure 3.1: Location of enumeration areas

Intervention efforts like ITNs continue to be applied in the country with special

emphasis to protect the vulnerable groups. Figure 3.1 shows the locations of

sampled households across Malawi. It shows that the survey data was collected

at points scattered all over the country hence the need to predict the results at

unobserved locations

3.2 Data sources and characteristics

3.2.1 Data collection

The MIS took place between March and April 2010. The survey was nation-

ally representative and a two stage cluster sampling approach was used. 3,500

households were surveyed from 140 standard enumeration areas (SEAs) randomly

selected from all the districts in the country. The malaria status of the child

between 0 and 5 years was determined by rapid diagnostic tests (RDT). Among

other pieces of information collected were knowledge of malaria by the parents,
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information on ITN use and wealth status of the household. Coordinates of each

visited household were also collected by the data collection team by means of hand

held GPS receivers thus yielding point referenced data. Due to the nature of the

survey, both NSO and Ministry of Health were involved.

3.2.2 Data management

Child and women data files were first merged by matching their household numbers

which reduced the number of observations from 3,500 to 2741. Children with no

matching test result were removed from analysis causing the sample to drop to

2094. In most of the households, only a single child who met the requirements was

tested. However, some households had more than one child tested for malaria. All

children were included in the analysis, with a common spatial random effect at EA

level. Data cleaning was carried out mainly in MS Excel to remove duplicates and

missing data. The data was then exported to Bayes X and R for further analysis.

One aspect of the data cleaning process was to reduce the number of variables

in the merged dataset. Variables such as age, wealth index, gender among others

were used in the analysis. Some of the key variables used are presented in table

3.1.

3.2.3 Climatic data

The climatic data used in the analysis was obtained from the Department of

Meteorological Services and Climate Change. Specifically, the data was obtained

from the network of weather stations that the department has across the country.

However, the challenge was that the data was from weather stations that did not

match the exact location of the data points. In other words, there was a mismatch

of observations. This was solved by using the interpolation method known as the

nearest neighbour method. Interpolation is a method of approximating the value
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of a non given point in space. The approximating algorithm considers the value

of the nearest point in order to calculate the missing value. The network of

weather stations provided the known points for the interpolation and the distance

was given by the coordinates. It was thus possible to calculate the approximate

rainfall, temperature and humidity of each household.

The advantage of using this method is that we have relatively reliable estimates

as it matches a data point to the nearest weather station thereby minimizing

errors. The method assumes linear interpolation between locations but non-linear

variations between places exist. Despite the presence of some errors, the calculated

estimates are quite reliable. Moreover, this methods uses actual readings recorded

by the MET department unlike other methods of obtaining point data through

simulation. Three month average (January-March) in order to assess how climatic

factors during the peak of the rainy season in Malawi affect malaria risk in children.

3.2.4 Low rank kriging

Figure 3.1 illustrates how the data points are scattered across the country. The

parametric geostatististical models use all the points for kriging leading to a com-

putation burden and slow convergence. Thus low rank kriging is used in this anal-

ysis through the REML procedure to predict malaria risk at unsampled locations.

Only a representative subset of these points is used for the kriging procedure.

3.3 Data analysis

The data is analyzed in two major software packages, Bayes X (Belitz et al., 2009a)

and R (R Development Core Team, 2011). Bayes X was used to formulate and

estimate the STAR models and for the prediction. However, further handling

of the results was done in the R package Bayes X (Kneib et al., 2011). This is

due to the fact that the stand alone Bayes X has limited graphical capabilities.
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The epicalc package in R (Chongsuvivatwong, 2011) is also used primarily for the

production of aggregate plots in exploratory analysis.

3.3.1 Description of key variables

Table 3.1 belows shows some of the variables used in the modeling.

Table 3.1: Description of key variables

Covariate Description
Age Age of the child in years
Age category Age category of child (categorical)
Altitude Height above sea level measured in m
Wealth Index Index showing the well being of the household

(1=poorest, 2=poorer, 3=medium, 4=richer, 5=richest)
ITN Variable showing if child slept in treated net

(0=did not, 1: slept in net)
Latitude The location of the sampled household in degrees
Longitude Location of sampled household given in degrees
District District where child was tested for malaria
EA Enumeration area where households are located
Rainfall Three month average rainfall in mm (i.e. Jan to March)
Min. temp Three month average minimum temperature in ◦C
Humidity Three month average humidity

3.3.2 Model specification

Let Yij be the malaria status of a child j at household i. Then Yij follows a

Bernoulli distribution. That is

Yij ∼ Bernoulli(pij).

The first step was to find the variables that were significantly associated with

malaria risk. Bivariate tests were also carried out to identify these variables which

were later put into the spatial models for further analysis. The following additive
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logistic regression models are fitted.

A1 : ηi = β′iγ +

q∑
k=1

xik

A2 : ηi = β′iγ +

q∑
k=1

fk(xik)

A3 : ηi = β′iγ +

q∑
k=1

xik + Φ(Si)

A4 : ηi = β′iγ +

q∑
k=1

fk(xik) + Φ(Si)

where ηi is the predictor, β′ is a vector of regression coefficients, γ is a vector of

categorical variables such as wealth index and xik are the continuous covariates.

The first model, A1, fitted all variables including the climatic ones as fixed linear

effects without any random effects. Secondly, in model A2, all the q continuous

covariates including the climatic variables were fitted as non linear terms in order

to assess the need of having these non linear terms in the model.

The second step in the model building process involved the inclusion of random

effects of district and enumeration area. A3 was fitted as a linear effects model

with random effects. Finally, model A4 fitted both the climatic and non climatic

metric covariates as non-linear terms in addition to the random effects. All the

four models were fitted in a full Bayesian framework.

For the spatial effect, a two dimensional P-spline prior was assumed. In order to

fit the non-linear effects, random walk priors of order two were employed. Trace

plots and autocorrelation plots were used for monitoring convergence. For all the

models, 10,000 iterations were run with a burn in sample of 1000 where the first

1000 iterations were discarded and a thinning parameter of 50. The thinning

parameter gives the sampling interval so that every 50th draw is stored and used

for calculating parameters. Model selection using the DIC was then carried out at

the end to choose the best model which could be used for inference. Model with

the lowest DIC was chosen as the best model.
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3.3.3 Priors for the fully Bayesian models

Two types of models are fitted, fully Bayesian and empirical Bayesian. Under the

full Bayesian approach, prior distributions were assigned to all model parameters.

The priors used in the modelling have the general form of equation 2.23. Specif-

ically this approach uses inverse gamma priors with parameters a = 0.001 and

b = 0.001.
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Chapter 4

Results and discussions

In this chapter, we present the results of the analysis of the MIS dataset. We first

present the exploratory data analysis results before moving on to make further

inferences based on the statistical models built.

4.1 Exploratory data analysis

The MIS was done across the country at EA and down to the household level.

The maps below show the differences in observed risks across the country.

Figure 4.1a shows that the northern part of Malawi has the lowest risk based on

the selected sample. The central and southern regions have higher malaria risk

than the northern part. In particular, central region had children at greater risk

of malaria with risk mainly over 0.6. These are just observed risks and there are

likely to be underlying reasons for these observed disparities across the country.

Figure 4.1b generalizes the observed risk to the district level which again shows

lower risks mainly in the northern region.
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(a) (b)

Figure 4.1: Observed parasitaemia risk (a) EA level (b) district level
.

4.2 Differences in malaria risk

Figure 4.2 below shows how malaria risk varies with changes in different covariates

at household level. It is evident that there is a general decline in the probability

of a child developing malaria as the wealth status of the house improves. Children

from these households are more resistant to the disease than their counterparts

from poorer families. It is also observed that the risk of malaria generally increases

as the age of the child increases. The youngest tested children in the survey, those

less than 12 months show the lowest probability of contracting malaria. These

probabilities were calculated by epicalc package by diving number of children with

malaria parasite with the number tested. The risk however steadily increases as the

age is increasing. Altitude also seems to play a key role in the possible distribution

of the disease. It can be seen from figure 4.2c that the risk drops as the altitude

increases from about 500m. The highest malaria risk was observed in medium

lying areas at around 500m and the lowest at around 1500m. These highland

areas are associated with lower temperatures that may not be very conducive for

malaria development. On the other hand, the low lying areas with observed low
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(a) (b)

(c) (d)

Figure 4.2: Aggregate plots: (a) malaria against age, (b) malaria by wealth, (c)
malaria by altitude and (d) malaria by latitude

.

probabilities of the disease could be because of extremely high temperatures typical

of these areas. It is known that the biology and ecology of malaria vectors is heavily

dependent on prevailing factors such as precipitation, humidity and temperature

(Githeko et al., 2000). For instance, mosquitoes are very active at the temperature

range of between 22◦C and 30◦C (Gemperli, 2003). Lower temperatures slow down

the life cycle development and temperatures above 34◦C generally have a negative

impact on the survival of parasites.
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Table 4.1: Association between parasitaemia risk and selected variables

Malaria
Selected variables # of children Yes (%) No (%) p-value
Age (years) <0.001
0 268 68(25.4) 200(74.6)
1 414 150(36.2) 264(63.8)
2 418 186(44.5) 232(55.5)
3 353 164(46.5) 189(53.5)
4 331 149(45.0) 182(55.0)
5 306 144(47.1) 162(52.9)
Location <0.001
Urban 555 91(16.4) 464(83.6)
Rural 1538 770(50.1) 768(49.9)
ITN 0.002
Yes 1502 586(39.0) 916(61)
No 591 275(46.5) 316(53.5)
Sex 0.649
Male 1045 435(41.6) 610(58.4)
Female 1048 426(40.6) 622(59.4)
Wealth index <0.001
Poorest 503 297(59.0) 206(41.0)
Poorer 286 161(56.3) 125(43.7)
Medium 423 125(43.7) 224(53.0)
Richer 395 124(31.4) 271(68.6)
Richest 486 80(16.5) 406(83.5)

4.2.1 Association between malaria and covariates

A Pearson Chi Square test showed that the age of a child is strongly associated

with the risk of the disease (p<0.001) which is in agreement with the aggregate

plot above. Similarly, a strong association exists between malaria risk and the

wealth status of the household (p<0.001). The area of residence, whether rural

or urban has a significant association with malaria with rural children more at

risk than their urban counterparts (p<0.001). Gender is however not linked to

the disease. This shows that all children are equally likely to have malaria bouts

regardless of the sex. Lastly, there is an observed association between ITN use

and malaria (p = 0.002) which needs to further be assessed to quantify its effect

as a malaria prevention strategy. These observed associations will be investigated

in relation with other variables later on under statistical models.
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4.3 Full Bayesian analysis results

In this section, we look at the different models built under a full Bayesian approach

and choose the best to be used in subsequent analysis. The chosen model will be

used to answer the first three objectives which are concerned with using the models

for answering questions about malaria.

4.3.1 Model choice

In table 4.2 below, the four models fitted under the full Bayesian approach are

compared in terms of their DIC.

Table 4.2: DIC of fully Bayesian models

A1 A2 A3 A4
Deviance 2162.31 1948.90 1726.42 1738.77

PD 15.46 38.48 100.45 77.79
DIC 2193.23 2025.85 1927.36 1894.35

The four different models were fitted in order to find the most parsimonious. The

model which fitted climatic covariates as non linear effects as well as incorporating

random effects of district and enumeration area (i.e. A4) was the best fitting model

(DIC=1894.35). The model with these components is chosen as the best model

since it has the smallest DIC among the four models. This model however com-

petes very well with linear model but with random effects (A3)(DIC=1927.33). On

the other hand, A2 which fitted the continuous covariates as non linear functions

without random effects has DIC=2025.85.

These results show that fitting the continuous covariates as non linear functions is

plausible and leads to better model. Consequently, model A4 is used for parameter

estimation. Furthermore, this model fitting reveals there is an effect of location

district and the enumeration area that are captured by the random effects.
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Table 4.3: Posterior estimates for model with non linear climatic effects and ran-
dom effects

Explanatory variable Non linear effects model (A4)
OR 2.5% Quantile 97.5% Quantile

Intercept 0.628 0.207 2.86
Location

Urban 0.218 0.130 0.397
Rural 1 1 1

Region
South 1 1 1
Centre 1.37 0.564 5.59
North 1.01 0.0752 5.58

Age category (yrs)
0-1 0.244 0.196 0.281
1-2 0.452 0.357 0.575
2-3 0.717 0.667 0.818
3-4 1.110 0.955 1.420
4-5 1 1 1

Wealth index
Poorest 2.07 1.72 2.78
Poorer 4.25 0.093 3118
Medium 0.476 0.00088 25.5
Richer 1.12 0.473 0.783
Richest 1 1 1

Interventions
Bed nets 0.628 0.473 0.783

4.3.2 Risk factors for malaria

Table 4.3 shows that age of a child is very much associated with malaria and the

risk increases with age. For instance, the odds of infection for the age group 0-

1 years are lower than the 4-5 year group (adjusted odds ratio[OR]=0.244, BCI:

(0.196,0.281)). In other words, younger children aged between 0 and 1 year are less

likely to be infected with the disease. Those children aged between 1 and 2 years

have slightly increased odds than the children aged less than 1 year but still much

less than those aged 4-5 ( adjusted OR=0.452, BCI:(0.357,0.575)). Following the

same trend, the age group 2-3 have lower odds than children aged between 4 and

5 (adjusted OR=0.717: BCI(0.667,0.818)). It is very clear from these results than

there is indeed an increased risk of malaria as the child’s age increases. This could
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be explained by a drop in the inherited immunity from the mother as the child

grows up. During this period, other supplementary foods are typically introduced

to the child. These results corroborates the observation seen in the exploratory

analysis where aggregate plots showed increasing risk with age. (See Figure 4.2a).

On a different note, area of residence also has an effect on the household malaria

risk with the odds of contracting malaria for urban children much lower than for

rural children (adjusted OR=0.218, BCI:(0.130,0.397)). There is also an observed

non-linear relationship between malaria risk and the wealth status of a household.

The odds of malaria infection drops as the wealth status goes up. From the fitted

climate and random effects model, children from poorest households have twice the

risk of malaria infection than the children from the richest household (adjusted

OR=2.07: BCI(1.72,2.78)). For the fourth quintile, there is lack of association

with the risk (adjusted OR=1.12, BCI:(0.473,0.783)). The strong association dies

down to almost non existence as shown in Figure 4.2b.

The region also has some effect particularly the central region which shows slightly

higher odds of malaria infection than the south (adjusted OR=1.37,BCI:(0.56,5.59)).

The use of bed nets as an intervention yielded positive results as children sleep-

ing under an ITN are less likely to have malaria attack (adjusted OR=0.628,

BCI:(0.473,0.783)). This is in agreement with a recent study which found a sig-

nificant reduction in asexual parasitaemia in under five children who slept under

an ITN (Skarbinski et al., 2011).

4.4 Non linear effects of continuous covariates

This section looks at the non-linear effects of continuous variables encountered in

the model.The figures plots the non-linear function of the continuous covariates

on the log odds scale against the covariate values of altitude, latitude, minimum

temperature and rainfall. In addition, the figures show the 80% and 95% confi-
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dence intervals of the posterior estimates. From figure 4.3a below, it can be seen

(a) (b)

(c) (d)

Figure 4.3: Non linear effects of continuous covariates: (a) altitude (b) latitude
(c) minimum temperature (d) rainfall

that malaria risk again steadily drops as the altitude increases. Households in

low lying areas especially those between 0-500m are seen to be highly at risk than

their counterparts in upland areas. These high risk areas in Malawi are likely

to be the low altitude areas along the lake shore and the lower shire which are

generally below 800m above sea level. These areas are about 8 times likely to

have their young ones contract malaria as households in upland areas (OR:exp

[2]=7.84). The figure shows very low risk for areas above 1500 m to be as low

as 0.0183. Areas in the country with such observed low risks mainly include the

highland areas in the north such as Nyika Plateau, Dedza in the Central areas
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among others (Kazembe, 2007).

4.4.1 Effect of latitude

The latitude also shows an effect on malaria with higher risk being observed in the

mid lying latitudes. Malawi is long and narrow in shape and generally falls between

−10◦S in the North and around −17◦S in the Southern Region. The observed high

risk mid latitudes corresponds to areas in the Central Region. The high risk here

could be due to several reasons one of which is the elevation. The two biggest

plains in Malawi, Lilongwe and Kasungu are found in this region thus there are

fewer mountainous areas compared with the other two regions. The central areas

have about twice the risk as northern most regions (exp[0.5]=1.65). Although the

south itself has low areas in the Lower Shire, temperatures there are usually very

high which may hinder larval development and consequently the transmission.

This perceived high risk area in Nsanje and Chikwawa is also home to a number

of NGOs that are involved in the distribution of ITN especially targeting children

and pregnant mothers. This may have an overall reduction in the risk for the

south by neutralizing the Lower Shire effect to an extent. The lower populations

in the north may also be to the advantage of malaria intervention initiatives. A

risk map produced by (Kazembe et al., 2006) shows large portions of the Central

Region with high prevalences ranging from 0.739 to 0.944.

4.4.2 Effects of rainfall and temperature

The peak climatic variables during the period January to March show varying

season effects on the risk of the disease. For minimum temperature, there is

an observed drop as the minimum temperatures increase towards mid twenties.

There is an observed lack of association between lower seasonal temperatures (i.e.

from 16◦C to 21◦C) and malaria risk. It has been observed that malaria parasites

are very inactive around these temperatures which could help explain this lack
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of a association (Sachs and Malaney, 2002). The highest risk is observed 19◦C

and 21◦C (OR=exp[0.1]=1.11) and drops to around (OR=exp[-1.8]=0.165). As

temperatures start rising above 21◦C, there is an observed association between

minimum temperature and malaria risk (OR=0.135). Minimum temperatures

during the peak rainfall period have a generally weak association with malaria

risk. The odds ratios are approximated from the nonlinear effects in figure 4.3.

On the other hand, the non linear effect of rainfall is also not very significant

with the odds of infection staying relatively constant (OR ≈ 1.00) as the average

rainfall in the three months preceding the survey increases. This clearly shows

lack of association between the two variables. However, there is an increase in

risk as average rainfall exceeds 260mm. (OR increases from 1.00 at 230mm to

about 2.2 at 350mm). This doubling in risk may have been brought about by

widespread availability of conducive breeding sites for the malaria vectors. Even

though this is the case, the relatively wide Bayesian credible interval (BCI) as

rainfall amount increases shows that there is a lot of uncertainty in the calculated

estimate. Comparatively, there is a narrow BCI associated with the less rainfall

amounts which suggests that the observed lack of association between rainfall and

malaria risk shown by the odds ratio close to the value1 (OR ≈ 1.00) is quite valid.

This lack of association has been found before by Kazembe et al among others

(Kazembe et al., 2006; Gosoniu et al., 2006). However, the climatic variables are

found to be not significant after accounting for altitude and latitude which are

associated with rainfall and temperature.

4.5 Sensitivity analysis in fully Bayesian models

In Bayesian analysis, the estimates may be influenced by several settings whilst

running the MCMC algorithm. This necessitates that model validation be carried

out on the chosen model by changing a few parameters and then comparing the

observed changes in the estimates. In this thesis, we are going to achieve this by
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changing the priors and other parameters in our models and then compare the

fit. In the fitted models, we used the default inverse gamma priors with both

parameters equal to 0.001, i.e.

p(θ) ∼ IG(a = 0.001, b = 0.001)

For the chosen model, we fit three models by changing the prior distributions where

model M1 has priors (a=0.00001,b=0.00001), M2 has priors (a=0.0005,b=0.0005),

M3 has (a=1,b=0.005) and lastly M4 has the default priors (a=0.001,b=0.001).

The predicted means of the three models are plotted in the boxplot below; The

Figure 4.4: Box plot showing distribution of predicted means using the four models

predicted means are almost identical which shows that the model is not affected

by changes to the priors. This observation gives confidence in the model perfor-

mance. This observation is supported by the almost similar DIC which shows

that the model’s performance is not affected by changes in the prior distributions.

Changing the prior distribution does not seem to affective the model.
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Table 4.4: Table showing comparative predictive power given different priors

M1 M2 M3 M4
Deviance 1727.73 1727.60 1732.53 1727.98

pD 95.25 93.65 92.47 93.06
DIC 1918.23 1914.89 1917.45 1914.15

4.6 Model diagnostics

In this section, we take a further look at the model performance by looking at

how it converges. The trace below is of two parameters in the model. The results

shows a converging Markov Chain as the number of iterations increases. It mixes

quite well and jumps almost between two bounds. More trace plots are presented

in the appendix.

Figure 4.5: Trace plots of two parameters in the model

4.7 Empirical Bayesian analysis

This section is primarily concerned with presenting kriging results. Due to the

large number of observation points, the space filling algorithm is used where only

a representative sample of the points (knots) is sampled for inference. In the results

that follow, we present results of the same model but using different numbers of

knots. Later on, the kriging results will be presented and discussed.
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The prediction surface below presents the results of the empirical Bayesian anal-

ysis. Figure 4.6 is a surface interaction plot of the various covariates. This plot

Figure 4.6: Predictive surface of under five malaria risk in Malawi

represents risk factors not directly observed but having an impact on the risk of

malaria in children aged less than five. The mid latitude areas which corresponds

to Central region areas have highest risk as shown by the peak. The north regis-

ters the lowest risk at the low latitudes between −10◦ and −12◦. The perspective

plot also reveals that malaria risk stays relatively constant across the width of the

country which is represented by the longitudes. This can be explained by the lim-

ited range of longitude for a narrow country like Malawi (Kazembe, 2007). There

is less spatial variation in disease risk across the breadth of the country.

Figure 4.7a shows the kriging surface with the map of Malawi overlaid. The central
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areas in particular are more likely to have the highest risk. This is in agreement

with the observed risk map which showed the central areas to be at the highest

risk. Similarly, the lowest malaria risks are predicted in the northern region. This

is in agreement with a recent study using point referenced malaria prevalence

data that found high and low risks in the centre and north respectively (Kazembe,

2007). In particular, these northern areas with low risk are higher altitude areas

such as Mzimba and Rumphi. In the centre, Lilongwe, Kasungu, Salima have

particularly higher risks as shown on the map. The south also has high malaria

risk in areas such as Phalombe plain and Mangochi and surrounding areas. One

interesting finding is that lower risks are predicted in the the Lower Shire. Higher

temperatures which are known to reduce transmission are very prevalent in this

area and that could potentially reduce the malaria prevalence. Mass distribution

of ITNs as a preventive measure with special emphasis on usage by children and

pregnant mothers is another reason that could explain the apparent lower risks.

The under sampling in this region coupled by total lack of sampling in Neno

and Mwanza may also help explain this observation. In this analysis, we used

smoothing approach and as a result, kriging parameters of sill, range and nugget

parameters are not explicitly estimated.

In order to show the precision, a map of standard errors is plotted. The errors

in this map are relatively large ranging from 0.8 to around 0.96. Even though

this is the case, this narrow variation points to a quite precise prediction map.

In figure 4.7b, there are higher errors in the northern part of Malawi shown by

warmer colours as compared to the central and southern areas. This observation

also coincides with the sampling density in these areas. The north had the lowest

sampling density in the 2010 MIS. The general observation is that areas closest

to the sampled points have lower standard errors than those areas that are far as

shown by the contours. Areas around Lilongwe and Blantyre fall within the same

standard error owing to the high sampling density in these two areas.
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(a) (b)

Figure 4.7: (a) Map showing predicted risk based on the posterior median of the
prediction model (b) Map showing the prediction standard errors

4.7.1 Sensitivity analysis in empirical Bayesian models

We fitted the same models three times by increasing the number of knots used in

the space filling algorithm. We started with a model with 300 knots then moved

to 400 before finally settling at 500 knots. The AIC and BIC for the three models

used for model selection are shown in the table below. From Table 4.5, it can be

Number of knots AIC BIC
300 2107.95 2661.41
400 2108.75 2664.43
500 2108.15 2664.43

Table 4.5: AIC and BIC of three different models

seen that all three models are very similar in their predictive power. However,

the model with 300 knots which represents 20.5% of the observation points is

marginally better than the other two and was consequently used to produce the

prediction surface. The parameter estimates realised from the models are also

almost identical.
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Chapter 5

Conclusions and recommendation

5.1 Conclusions

The study has shown that geostatistical data such as the MIS are usually spatially

correlated and requires adaptation of the usual GLMs to take into consideration

the inherent correlation in the data. Environmental, topographical and climatic

variables are usually associated with malaria in the malaria endemic zones includ-

ing Malawi. Accounting for these variables in the model leads to more accurate

estimates which may not be the case when spatial autocorrelation is omitted. In

such a scenario, parameter estimates tend to be overstated.

In this thesis, we used structured additive regression models that extend the GLM

by modeling the nonlinear effect of the continuous covariates. This approach has

helped reveal some complex relationships between the response variable and the

continuous covariates that may be missed in the GLM which usually assumes a

linear association between the two.

In particular, peak seasonal climate variables of rainfall and minimum tempera-

tures were shown to be not very significantly associated with malaria risk.

Over and above these observations, the empirical risk map in figure 4.7a can be
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used in intervention activities by identifying areas that are likely to have higher

risks. Since the map is based on country representative survey, the maps produced

in this thesis are more credible than what has been done in the past and can be

trusted for use in control initiatives. These results, coupled with expert opinion

which is widely utilized in the absence of empirically produced maps can lead

to the best understanding of the spatial distribution of malaria and hence better

approaches in the fight against the disease in young children.

The 2010 MIS will also act as a baseline upon which subsequent surveys will

be built. This is crucial in that it is possible to monitor trends in malaria risk

among children as well as exploring newer and complex relationships between

parasitaemia risk and environmental, climatic and socio-economic factors among

others. At the same time, this kind of analysis makes possible the evaluation

of different interventions so that they can be improved upon in the subsequent

surveys.

5.2 Recommendations

The continued efforts to fight malaria in children should place focus on the Cen-

tral Regions plains that show high malaria risk. Traditionally, emphasis has been

placed on the Lower Shire and areas along the Lake Shore with similar climatic

and environmental attributes. These areas, though having high risk should not

take focus away from the central plains. Empirically obtained findings from rep-

resentative surveys together with the predicted risk maps should be used in the

planning of malaria interventions. In this way, the allocation of scarce resources

can be effectively planned well in advance. There is need to make full use of the

risk maps and cultivate the spirit of attaching more importance to survey findings

which currently is not widely done.

There was also under sampling in many of the enumeration areas and this can
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be improved in the next MIS. Being a nationally representative survey, the MIS

should be very comprehensive resulting in more data that can yield more reli-

able results thereby contributing to effective malaria control interventions. The

observed conflict with expert opinion can be partly attributed to this under sam-

pling thus rendering the prediction not very effective in some parts of the country.

For a long time, the analysis of epidemiological data in Malawi has not utilized

spatial statistical methods mainly due to the unavailability of geographically ref-

erenced datasets. We recommend that in the national surveys geographical co-

ordinates of the sampled locations be collected. This will promote the area of

spatial epidemiology that is gaining widespread use elsewhere but has not been

fully exploited in Malawi. The fight against malaria in children needs targeted

interventions that can be achieved by having this kind of data.
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Appendix A

Software

A.1 Bayes X

This object oriented software for structured additive regression models was de-

veloped at the Ludwig-Maximilians-Universität München in Germany and is the

primary software used in the analysis of the data for this thesis. Bayes X can be

freely downloaded from this site (http://www.stat.uni-muenchen.de/~bayesx/

). The current version 2.0.1 was developed in October 2009. It supports both fully

Bayesian and Empirical Bayesian estimation approaches

A.1.1 Bayes X syntax

For the full Bayesian, the syntax is as follows: The data has to be converted into

an ASCII format before it is read into Bayes X. Being an object oriented, an

object that holds the dataset must be defined at the beginning. Here we create

an object holding the MIS data which will be called mis

> dataset mis

> mis.infile using C:/ ... # This line of code reads in the data.

> mis.describe # Allows visualiation of the data in a spread sheet
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> bayesreg model1 #Make a bayesreg object

> model1.outfile = C:/... # Specifies output location

Now the actual model is specified in this manner

> model1.regress rdt=agecat1+agecat2+agecat3+agecat4+urban+

north+centre+w1+w2+w3+w4+sleptnet+alt(psplinerw2)+Rainfall(psplinerw2)+

Min.temp(psplinerw2)+latitude(psplinerw2)+distr(random)+

ea(random),family=binomial iterations=10000 burnin=1000 step=50

predict using mis

# The empirical Bayesian syntax The bayesreg object is simply replaced with the

remlreg, i.e.

> remlreg model2

> model2.regress rdt=agecat1+agecat2+agecat3+agecat4+urban+

north+centre+w1+w2+w3+w4+sleptnet+alt+Rainfall+

Min.temp+latitude*longitude(kriging,nrknots=500),

family=binomial lowerlim=0.001 eps=0.001 using mis

A.2 R

R is a freely available statistical package widely used in statistical analysis. People

are free to download R and its contributed packages at http://www.r-project.

org/. The software is very versatile and has all the capabilities of commercial

software and much more. The R package BayesX provides additional graphing

capabilities. Results from the stand alone Bayes X software can be visualized in

R thereby making use its excellent graphing facilities to plot the nonlinear effect

of continuous variables.

> library(BayesX) #Load the package first

The plotnonp function plots nonparametric effects from the Bayes X results di-

rectory
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> plotnonp("C:/.../results altitude pspline.res",ylab="s(altitude)")

Other functions for visualizing Bayes X results include plotsurf, plotautocorr.

For instance, the plotsurf can be used to visualize surfaces.

> plotsurf("C:/.../results latitude*longitude.res",

ylab="s(latitude*longitude)")

A.3 MCMC convergence

A.3.1 Trace plots

The check for convergence of the Markov chain in Bayesian analysis is a necessary

step in model diagnostics of fully Bayesian models. This is done by looking at

the trace plots of the model parameters. In this section, we present trace plots of

some of the model parameters.

Fig A.1 show that the chains converge quite well for the model parameters.

A.3.2 Autocorrelation functions

Fig A.2 below shows the autocorrelation functions of sampled parameters in the

Markov Chain. The plots show clearly that there is no autocorrelation in the

sampled parameters as the line moves around zero.

A.4 Metropolis-Hastings algorithm

Let θ = (θ1, . . . , θ) are the parameters to be estimated, then a value for θ at each

iteration is sampled. The algorithm discussed by (Kim et al., 2010) is as follows;

1. Assign initial values to θ(0). The starting point can be arbitrary provided

f(θ0|y) > 0
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2. Set θ∗i from the density Ji(θ
∗
i ; θ

(t)
i )for1 ≤ i ≤ n

3. Compute the ratio of densities

r =
p(θ∗i ; y)Ji(θ

(t)
i ; θ∗i )

p(θ
(t)
i ; y)Ji(θ∗i ; θ

(t)
i )

where p is the full conditional distribution of θi

4. Set

θ
(t+1)
i =


θ∗i with prob. min(r,1) and,

θ
(t)
i otherwise

A.5 R code for prediction surfaces

This section gives the R code used to produce the predictive surface for malaria

risk. The data files are extracted from Bayes X after running a REML model

#Plot predictive posterior means

>data=read.table("kriging.txt",header=T)

>x=data$longitude

>y=data$latitude

>z=data$pmode

>library(akima)

>data.interp <- interp(x,y,z,duplicate="mean")

>jpeg("mappmode.jpg",width=(20*0.39),height=(20*0.39),units="in",

res=300,quality=100)

>par(cex=1.2,mfrow=c(1,1),cex.lab=1.2,cex.axis=1,tcl=NA,bty="n",

mar=c(3,3,3,3),mgp=c(1,0.1,0))

>plot(map,col="transparent",bg="white")

>image(data.interp,axes=F,col=terrain.colors(12),xlim=c(31,37),

ylim=c(-19,-8),add=T)

>contour(data.interp,add=T,axes=F)
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>plot(map,add=T)

>plot(lake,col="white",add=T)

>plot(lake,col="lightblue",density =50,add=T)

>plot(map,col="transparent",bg="white",add=T)

>box(lwd=0.3,bty="o")

>dev.off()

#Plot of standard errors

>x=data$longitude

>y=data$latitude

>z=data$std

>library(akima)

>data.interp <- interp(x,y,z,duplicate="mean")

>jpeg("mapstd.jpg",width=(20*0.39),height=(20*0.39),units="in",

res=300,quality=100)

>par(cex=1.2,mfrow=c(1,1),cex.lab=1.2,cex.axis=1,tcl=NA,bty="n",

mar=c(3,3,3,3),mgp=c(1,0.1,0))

>plot(map,col="transparent",bg="white")

>image(data.interp,axes=F,col=terrain.colors(12),xlim=c(31,37),

ylim=c(-19,-8),add=T)

>contour(data.interp,add=T,axes=F)

>plot(map,add=T)

>plot(lake,col="white",add=T)

>plot(lake,col="lightblue",density =50,add=T)

>plot(map,col="transparent",bg="white",add=T)

>box(lwd=0.3,bty="o")

>dev.off()
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Figure A.1: Trace plots for some of the model parameters
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Figure A.2: Autocorrelation functions for sampled parameters
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Appendix B

Ethical statement

The coordinates of the households have been used only for purposes of data anal-

ysis and will NOT be used in any other way. No attempt to identify the locations

of the households using the coordinates will be made. Furthermore, consent was

sought from the respondents before interviewing them during the data collection

exercise and the confidentiality was guaranteed. The detailed consent form is

presented below.
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Appendix C

Consent form

C.1 Introduction

The Ministry of Health wants to learn how well the malaria prevention programme

is working in Malawi. We would like to ask you some questions about bed net use

in your home, and also some general questions about your children’s health.

We are also doing a survey of malaria in children. To do this, we will test children

for malaria parasites in the blood. One way to test for malaria parasites in the

blood includes taking a small sample of blood by finger prick and examining under

a microscope and in a laboratory. Another way is to look at anaemia (low levels

of blood), by taking a small sample of blood by finger prick and examining with

a HemoCue machine.

C.2 Purpose of the survey

We want to see if our country’s malaria programme works. We will ask you some

questions about bednet use in your home and also about your children’s health.

We will also see how common malaria is among young children in the community
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by testing for parasites in the blood and also by testing for low levels of blood. We

will visit people in their homes and look at people that come to health facilities.

This will help us learn how best to measure the effects of malaria control in the

community.

C.3 Procedures

If you agree to take part, we will ask you a few questions, and a nurse will take a

small amount of blood from your child’s finger.

We will ask you questions about bed net use in your home, and about other things

that are linked to malaria. We will also ask some questions about your health and

about your children’s health. This should only take about 30 minutes.

We will take only up to eight drops of blood from your child. One drop of blood

will be wiped off. The second drop of blood will be used to test for malaria in the

lab using a microscope. The third drop of blood will be used to test for low levels

of blood (anaemia) here in the house. The fourth drop will be used for a rapid

malaria diagnostic test here in the house. The remaining four drops of blood may

be put on paper for additional laboratory analysis of malaria.

The results for low levels of blood and for the rapid malaria diagnostic test will

be given to you today. If your child has low levels of blood, malaria, or history

of fever, we will give you treatment. This will be the same treatment your child

would get if you went to your health centre. This will cost you and your family

nothing. If the nurse thinks that your child is very ill, we will assure transport to

the nearest health clinic to provide your child with the necessary health care.

Lab test results will be ready after one week. If your child has malaria, a survey

staff member will return to your house to give treatment for malaria to your child.

This will only happen if your child has not already been treated today. Even if

you do not wish to take part, you can still ask to see the nurse and get the correct
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treatment. Even if you do not agree to take part, if your child is ill, you should

visit the nearest health clinic if your child is not better in three days or is worse

over time.

C.4 Risks and benefits

Your child will feel a pinch that lasts a few seconds when we take the blood tests.

For any malaria health problem that we find, the nurse will give the treatments

that the Ministry of Health suggests. These drugs are proven safe and effective,

but any drugs can cause side effects in a small number of patients. The nurse will

discuss these with you.

C.5 Voluntariness

It is your choice to be in this survey. It will not affect the care that the nurse

will give you or your children should you wish to receive it. If you do agree to

take part, your answers to all questions and your child’s test results will be kept

private to the extent the law allows. If you agree to take part, you can also decide

not to answer any of the questions that you do not want to, and you can refuse

the blood tests.

If you have any questions or clarification pertaining to this survey please feel free

to contact Mrs Doreen Ali, 0889374043 or Dr D. Kathyola, 088834443.

Thank you very much for your time. Would you like to take part in this survey?

Statement of Parental Permission for malaria surveillance (signature or thumbprint

required) The above has been read to me, and I agree to let my child take part.

Signature Date

Thumb print:
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Participant’s name

For persons who cannot sign

The above consent was read and the person agreed to take part

Signature Date
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